Large established B16 tumors in mice are eradicated by ZVex® (DC-targeting lentiviral vector) and G100 (TLR4 agonist) combination immunotherapy through increasing tumor-infiltrating effector T cells and antigen spreading

Tina A. Albershardt, Jardín Leleux, Andrea J. Parsons, Peter Berglund, and Jan ter Meulen

Immune Design, Seattle, WA and South San Francisco, CA

INTRODUCTION

Effective immunotherapy requires the presence of effector T cells (pervading the tumor. ZVex® (administered intradermally as subcutaneously) is a lentiviral vector platform that targets dendritic cells in vivo to express tumor-associated antigens (TAA) genes of interest and activate TAA-specific CD T cells. G100® (administered intratumorally) contains formulated glucosynaprosynap lipoprotein (synthetic TLR4 agonist) and induces T cell-homing chemokines, CXC10 and CXC11. We report here that G100® modulates the tumor microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/anti-TAA microenvironment (TME) and improves infiltration of ZVex®-induced TAA-specific CD T cells to the TME, thereby eradicating established B16 tumors, previously achieved only with a complex vaccincation/ant